ROBOTIC STEEL WELDING

Here is a great example of a steel welded assembly at Lean Machine.  It's a steel ring with a strengthening rib welded on.  As the demand for this part has increased we've applied our standard thinking: if an employee is going to do the same repetitive task over and over (and most likely get extremely tired of doing so) then we need to find a better way to accomplish the task.  Our Motoman/Fronius robotic welding cell is always happy to help us automate.


Step 1- Design and build a jig assembly that can make part placement repetitive and accurate.  We've used the Motoman positioner in conjunction with the robot to help keep weld angles consistent.  Consistent weld angles give us good flux gas (CO2/Argon mix) coverage to make sure welds are not contaminated with atmospheric impurities. 


Step 2 - Make the parts themselves better to help with the whole process.  Here you can see slots in the ring so the rib can index itself with tabs.  On the surface, these parts would be much cheaper to produce out of steel flat-bar but we've decided to laser cut them so we can tightly control tolerances on hole sizes and add trick tab and slot features.


Step 3 - Write a really great robotic welding program in RobotMaster.

Step 4 - Run off parts as quickly as possible!


The resulting weld bead has a good start, nice bead size, proper penetration, and a great crater fill.  With all of the parameters available in the Fronius welders you can "tune out" and splatter so the parts need zero clean-up after the weld process and zero anti-splatter coating.

Previous
Previous

LATHE MACHINING COST REDUCTION

Next
Next

HEAVY STEEL PART FABRICATION